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Proton Therapy 



Proton Therapy

How

- Tissues are made of molecules composed of atoms
- Each atom has a nucleus along with surrounding electrons
- Ionization occurs which changes atom’s properties
- Energized protons work to damage DNA inside of tumor 

cells
- Cancer cells sustain permanent damage

Sources: 
https://www.proton-therapy.org/science/
Polf and Parodi, Physics Today 2015

https://www.proton-therapy.org/science/


Proton Therapy

Why

- All radiation techniques work in a similar fashion
- Proton beams stop at a certain point whereas other 

techniques such as x-rays do not stop (Bragg Peak)
- Extra and unnecessary radiation can cause damage to 

healthy surrounding tissue

Sources: 
https://www.proton-therapy.org/science/
Polf and Parodi, Physics Today 2015

https://www.proton-therapy.org/science/


Compton Camera 



Understanding the Compton Camera
The proton beam’s interaction with tissues in the body generates prompt 

gamma rays. 

The CC modules measure the energy deposited by the gamma for each 

interaction, as well as its position as it scatters in the different detection 

stages of the camera.  

CCs have the capability to reconstruct full 3D images of the proton beam 

range, which in a perfect world could be used with the patient’s CT to 

compare the planned treatment dose and make adjustments. 

The non-zero time resolution of the Compton camera, during which all 

interactions are recorded as occurring simultaneously, causes the 

reconstructed images to be noisy and insufficiently detailed to evaluate the 

proton delivery for the patient. 

J. C. Polf, Carlos A. Barajas, et al. “A study of the clinical viability of a prototype Compton 
camera for prompt gamma imaging based proton beam range verification.” 



Scattering Events
True Double-Scatter: A single prompt gamma 

interacting twice in the Compton Camera. 

True Triple-Scatter: A single prompt gamma 

interacting three times in the Compton Camera.

Double-to-Triple: When a double-scatter and a 

single-scatter from a separate prompt gamma 

recorded together as a triple-scatter. 

False events: Double-scatter and triple-scatter 

events that happens with multiple PGs interacting 

simultaneously with the CC rather than a single 

PG. 

Sources: 
J. C. Polf, Carlos A. Barajas, Gerson C. Kroiz, et al. “A study of the clinical viability of a prototype Compton 
camera for prompt gamma imaging based proton beam range verification.” In: AAPM Virtual 63rd Annual 
Meeting, submitted (2021).



Some limitations of the Compton Camera
● Other particles other than the prompt gamma rays might interact with the 

camera. 

● Wrong ordering and recording of Double and Triple scatter events by the CC. 

● The detection of ‘false events’. 

● The presence of Double-to-triple events . 

J. C. Polf, Carlos A. Barajas, et al. “A study of the clinical viability of a prototype Compton 
camera for prompt gamma imaging based proton beam range verification.”



Deep Learning 



Fully Connected Neural Network

A DNN is composed of :
An input layer: takes in the data in vector form,
Hidden layers: transforms the data using an activation function, 
An output layer: that returns a specific format of the transformed data.
For the purpose of our studies, we are using a previously built network configuration by Carlos. 

Source: Carlos Barajas, 
https://umbc.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=e45d9492-15c3-4e05-a3d8-ad3c00ef28f9

Gerson C. Kroiz, Carlos A. Barajas, Matthias K. Gobbert, and Jerimy C. Polf. Exploring Deep Learning to Improve Compton Camera 
Based Prompt Gamma Image Reconstruction for Proton Radiotherapy. In: The 17th International Conference on Data Science 
(ICDATA’21)

https://umbc.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=e45d9492-15c3-4e05-a3d8-ad3c00ef28f9


Understanding the data



The Data 

● The data is in the form of coordinates for each interactions of gamma rays with an extra 
column dedicated to the energy levels. 

● An interaction is all the coordinates and energy level from the gamma ray’s collision. 
● An event is made of all three interactions. 
● The CC fails to identify the correct order of the events, which creates noise in the data.  

Thus, the use of a neural network to improve the data

Source: Carlos Barajas, GAMM 2021:
https://umbc.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=e45d9492-15c3-4e05-a3d8-
ad3c00ef28f9

https://umbc.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=e45d9492-15c3-4e05-a3d8-ad3c00ef28f9
https://umbc.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=e45d9492-15c3-4e05-a3d8-ad3c00ef28f9


More on the data 
● The data was provided by our collaborator Dr. Polf and prepared for 

training by Carlos .
● It was generated using a Monte Carlo simulation.
● The columns of the data are the energy levels and the coordinates of 

each interaction. 
● This data has 1,821,255 records with 12 features.
● Each record represents an event. 
● Our first step was to analyze the raw data.











Hardware Description



Machine Description
In our many hyperparameter studies we used the Graphic Processing Unit (GPU) clusters in the taki system in 

the UMBC High Performance Computing Facility (hpcf.umbc.edu).

GPU2018

● 1 GPU node has four NVIDIA Tesla V100 GPUs

● 16 GB onboard memory connected by NVLink,

● two 18-core Intel Skylake CPUs, and 384 GB of memory. 

GPU2013 

● Partition has 18~hybrid CPU/GPU nodes,

● Each with two NVIDIA K20 GPUs (4GB onboard memory),

● Two 8-core Intel E5-2650v2 Ivy Bridge CPUs (2.6 GHz clock speed, 20 MB L3 cache, 4 memory 

channels), and 64GB of memory .



Key Parameters for 2013 and 2018 GPU
2013 GPU

- We used the cybertrn account with 

the GPU 2013 partition. 

- 2 GPUs per job.

- The studies ran from 4 hours to 16  

hours, and used 16 cores per task 

and  MaxMemPerNode. 

2018 GPU

- We used the cybertrn account with 

the GPU 2018 partition. 

- 1 GPU per job.

- The studies ran from 4 to 8 hours , 

used 8 cores per task and 30G. 



Hyperparameter Studies



Training Specific Information 

● The data was made using a Monte Carlo simulation.
● The data consist of triples, doubles to triple scatter, and false events. 
● This data has 1,821,255 records with 12 features. 
● An interaction is a grouping of three spatial coordinates (x,y,z) and an 

energy level.
● An event is made of all three interactions and each record is an event.
● We use 20% of the data for validation and 80% for training. 
● The data was normalized using the sklearn Power transformer 

(Yeo-Johnson) on the energy and the MaxAbsScaler on the spatial data. 



Full Hyperparameter Studies
Same for all studies: 1024 epochs and 0.2 validation

All possible combinations

1. Drop out rate: 0, 0.2, 0.4

2. Number of Layers: 8, 16, 32, 64, 128, 256

3. Number of Neurons: 32, 64, 128, 256

4. Batch size: 1024, 2048, 4096, 8192 

We are going to use GPU2018 for the networks of 256 layers and neurons. 

Total number of studies: 288 → 3*6*4*4



Six Promising Results From 288 Studies: Peak Val Accuracy > 76%
Study No Drop Out Validation Num_layers Neurons Batch_Size Epochs

84 0 0.2 256 64 2048 1024

90 0 0.2 256 64 4096 1024

162 0 0.2 256 128 4096 1024

167 0 0.2 128 128 8192 1024 

168 0 0.2 256 128 8192 1024

238 0 0.2 64 256 8192 1024



Studies Results
Study# Drop out Validation Layers Neurons Batch 

size
Epochs Peak Val 

Accuracy
Final Val 
Accuracy

84 0 0.2 256 64 2048 1024 0.7736 0.7643



Confusion Matrices for study 84 on testing data  

20 kMU beam 100 kMU beam 180 kMU beam



Studies Results
Study# Drop out Validation Layers Neurons Batch 

size
Epochs Peak Val 

Accuracy
Final Val 
Accuracy

90 0 0.2 256 64 4096 1024 0.7727 0.7458



Confusion Matrices for study 84 on testing data  

100 kMU beam20 kMU beam 180 kMU beam



Studies Results:
Study# Drop out Validation Layers Neurons Batch 

size
Epochs Peak 

Validation
Final 
Validation

162 0 0.2 256 128 4096 1024 0.79395 0.79101



Confusion Matrices for study 162 on testing data  

Test 1-20kMU

Test 1-100kMU

Test 1-180kMU



Studies Result:
Study# Drop out Validation Layers Neurons Batch 

size
Epochs Peak 

Validation
Final 
Validation

167 0 0.2 128 128 8192 1024 0.78399 0.77371



Confusion Matrices for study 167 on testing data  

Test 1- 20kMU Test 1-100kMU

Test 1-180kMU 



Studies Results:
Study# Drop out Validation Layers Neurons Batch 

size
Epochs Peak 

Validation
Final 
Validation

168 0 0.2 256 128 8192 1024 0.82305 0.7954



Confusion Matrices for study 168 on testing data  

Test 1- 20kMU
Test 1- 100kMU

Test 1- 180kMU



Studies Results:
Study# Drop out Validation Layers Neurons Batch 

size
Epochs Peak 

Validation
Final 
Validation

238 0 0.2 64 256 8192 1024 0.794 .744



Confusion Matrices for study 238 on testing data  

Test 1- 20kMU
Test 1- 100kMU

Test 1- 180kMU



Results Discussion  
In general, these parameters showed promise with higher accuracies:

- Larger batch sizes

- Higher number of layers

- Higher number of neurons 

We saw that the network performs well on the training data and validation data, but it 

struggles to generalize on the testing set. 

The average classification accuracies on the testing data are in the mid-sixties, still 

need improvement to get comparable results as previous architectures. 

 



Ongoing Works and Preliminary Studies 



Extension of the Studies with Individual Normalizers
Variables held constant 

- Validation: 0.2

- Epochs: 256

Variables changed

- Dropout rate: 0, 0.1

- Number of layers: 128, 256

- Number of neurons: 64, 128

- Batch size: 2048, 4096, 8192

- Normalization techniques: 4 different techniques were used (see next slide)

- Optimization: adam (default)

Total number of studies: 96



Normalization 1 Normalization 2 Normalization 3 Normalization 4 Original 

Energy MinMaxScaler(Squar
e root (data)) 

MinMaxScaler Power Transformer 
(Box-Cox)

Power Transformer 
(Log (data))

Power Transformer 
(Yeo-Johnson)

Spatial Standard Scaler MinMaxScaler Power Transformer 
(Yeo-Johnson)

Standard Scaler MaxAbsScaler

 Normalization Study

We used numpy functions and applied different normalization techniques from Keras on our dataset to feed it to the network in our 
endeavors to improve accuracy. 



Top 4 Results with Normalization Changes



Promising Results
Drop out Validation Layers Neurons Batch size Epochs Peak 

Validation
Final 
Validation

0 0.2 256 128 4096 256 0.7463 0.7312

0 0.2 128 128 4096 256 0.7490 0.7273

Normalizer:

- Energy: 

MinMaxScaler(Square root 

(data)) 

- Spatial: Standard Scaler



Promising Results
Drop out Validation Layers Neurons Batch size Epochs Peak 

Validation
Final 
Validation

0 0.2 128 128 2048 256* 0.73661 0.71931

0 0.2 128 128 4096 256* 0.73631 0.71774

Normalizer:

- Energy: Box-Cox

- Spatial: Yeo-Johnson 



Optimizers with Momentum



Extension of the Studies with Momentum
Variables held constant 

- Validation: 0.2

- Epochs: 256

Variables changed

- Dropout rate: 0, 0.1

- Number of layers: 128, 256

- Number of neurons: 64, 128

- Batch size: 2048, 4096, 8192

- Normalization techniques: Original and four used from

- Optimizer: nadam, sgd

- Total number of studies: 240



Promising Optimizer Results
Drop out Validation Layers Neurons Batch size Epochs Optimizer Peak 

Validation
Final 
Validation

0 0.2 128 64 2048 256 nadam 0.7459 0.7229 

0 0.2 256 64 2048 256 nadam 0.7426 0.7262

Normalizer:

- Energy: 

MinMaxScaler(Square 

root (data)) 

- Spatial: Standard Scaler



Promising Momentum Results
Drop out Validation Layers Neurons Batch size Epochs Optimizer Peak 

Validation
Final 
Validation

0 0.2 128 128 2048 256 nadam .74615 0.73035

0 0.2 128 64 2048 256 nadam .75233 .75233

Normalizer (left):

- Energy:Power 

Transformer (Log 

(data))

- Spatial: Standard Scaler

Normalizer (right): 

- Energy: Box-Cox

- Spatial: Yeo-Johnson



SGD vs NAdam vs Adam Comparison
Drop out Validation Layers Neurons Batch size Epochs Optimizer Peak 

Validation
Final 
Validation

0 0.2 128 128 4096 256 SGD 0.480355 0.480356

0 0.2 128 128 4096 256 nadam 0.721711 0.721711

0 0.2 128 128 4096 256 adam 0.736313 0.717736

Normalizer: Energy → Box-Cox Spatial → Yeo-Johnson

SGD adam nadam



Results Discussion  
● For this data, we saw that 128 layers with 64 neurons,  a  batch_size of 2048 and 

dropout rate of 0 gave us the best accuracies using different normalization 

techniques, optimization and momentum. 

● Momentum is not a replacement for learning rate. 

● We also noticed a dip in performance in our hyperparameter studies using a sgd 

optimizer.

● Using the nadam normalizer, we still got an average accuracy less than the 

original model.  Thus, we conclude that for our specific configurations, using the 

original normalizers gives us better performance. 



Recurrent Neural Network 



RNN Studies
Variables held constant 

- Validation: 0.2

- Epochs: 512

- Dropout rate: 0

Variables changed

- Number of layers: 1, 2, 4, 8

- Number of neurons: 64, 128, 256

- Batch size: 2048, 4096

- Normalization techniques: Original and four used from earlier

- Optimizer: adam, nadam

- Layer: GRU, LSTM

- Learning rate: 0.001, 0.0001 

- Total number of studies: 960



Conclusions and Future Work 
- We found that using a combination of larger batch sizes, higher neurons per layer, 

and  higher layer counts tends to produce better performing networks.

- This shows promise in reducing the complexity of previous network architectures.

- Particular studies, if given considerably more training time, could yield 

competitive, if not superior, testing accuracy to existing architectures while 

maintaining a simpler structure.

- RNN seems to be a reasonable technique to use for this problem, as preliminary 

results show comparable numbers as the DNN results. 

All details and more information: Technical Report HPCF-2021-12, HPCF, UMBC, 

2021, hpcf.umbc.edu/publications


