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1. Introduction

● Accurate estimation of precipitation is crucial for a variety of applications such as 
extreme weather condition forecasting, flash flood management, and ongoing climate 
research [9].

● However, quantitative precipitation estimation (QPE) is limited through the following 
methods:
○ Collecting rainfall from rain gauges has limited spatial coverage.
○ Estimating rainfall from single-polarimetric radar data may fail to account for 

different precipitation types and intensities [2].
● Our research focuses on improving QPE using dual-polarimetric radar data with symbolic 

regression.
○ Symbolic regression provides a unique approach by providing interpretable and 

accurate equations learned from data [1].



2. Background

● Z–R relationships have been used since 1947 to estimate rainfall rate (R) using 
reflectivity (Z), and these equations vary slightly based on region and rain type [2].
○ Z = 300R1.4 (WSR-88D Convective)
○ Z = 200R1.6 (Marshall-Palmer)

● However, the commonly-used Z–R relationships fail to account for nuances in rainfall by 
precipitation type, region, and season [2].

● Dual-polarization radar variables better reflect the size, shape, and orientation of 
raindrops.
○ Using dual-polarization radar variables as input data, researchers have found that 

convolutional neural networks [5, 8] and random forest and regression tree methods 
[7] outperformed conventional Z−R relationships to estimate rainfall rate.

● In a study of deep-learning-based QPE models, rainfall estimates were more accurate 
when distinguishing rainfall intensity using a KDP threshold [3].



● Data from Central Oklahoma (June 8, 
2022 and July 9, 2023) and South Florida 
(April 12, 2023) with significant rainfall:

○ Dual-polarimetric radar data from 
the Weather Surveillance Radar, 1988 
Doppler (WSR-88D) at Level II.

○ Rain gauge data from the Oklahoma 
Mesonet and the South Florida Water 
Management District’s DBHYDRO.
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● Measures the amount of 
energy reflected back to the 
radar.

● Related to raindrop particle 
size and generally 
increases as rainfall rate 
increases [2].

3.1 Reflectivity Z (dBZ)



3.1 Reflectivity–Rainfall (Z–R) Relationships



● Impacted by the 
composition or density of 
raindrops, helping 
differentiate water drops 
from ice pellets and snow 
[4].

● The ratio between 
reflectivity factors at 
horizontal and vertical 
polarizations.

3.1 Differential reflectivity ZDR (dB)



● Measures variation in 
particle shapes and 
orientations [2, 4].

● Close to 1.0 during uniform 
rainfall and decreases with 
more variability in the 
types, shapes, and 
orientations of particles [4].

3.1 Co-polar correlation coefficient ρhv



● Derived variable that 
represents the change in 
differential phase shift ΦDP 
[2, 4].

● Useful for identifying heavy 
precipitation and when hail 
is mixed with rain, but can 
be noisy for light rain [4].

3.1 Specific differential phase KDP (deg/km)



4.1  Benchmarking Symbolic Regression Algorithms
4.2  Symbolic Regression on Subsets of the Data Using Feyn

○ Clusters (K-Means, Bisecting K-Means, Agglomerative Hierarchical)
○ Decision Tree Leaf Nodes
○ Grouping by Radar Variable Mean

4.3  Exploring New Symbolic Regression Models with gpg
○ Knowledge-based loss terms for gpg loss function

4. Methodology & Results



4.1 Benchmarking Symbolic Regression Methods

● Implemented eight symbolic regression methods based on criteria by La Cava et al. [1].
○ Genetic programming (gplearn, gpg, PySR, Feyn, pyoperon)
○ Deep learning (dso)
○ Other (FFX, RILS-ROLS)

● Run 10 trials with different training (75%) and testing (25%) sets.
● Analyzed accuracy using the coefficient of determination (R2) and the normalized root 

square mean error (NRMSE).
● Analyzed equation complexity with a simplicity score indicating the number of 

components within the equation.



Each model’s test R2 scores over ten trials 
sorted by median test R2

Each model’s median test R2 vs. median simplicity
(simplicity closer to zero indicates simpler equations)

4.1 Benchmarking Symbolic Regression Methods



4.1 Benchmarking Symbolic Regression Methods

Equation with best combination of 
accuracy and simplicity using symbolic 

regression with RILS-ROLS



Predicted rainfall rate based on equation from RILS-ROLS

4.1 Benchmarking Symbolic Regression Methods



4.2 Symbolic Regression on Subsets of Data
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● One significant challenge to precipitation 
estimation is capturing different 
precipitation types, distributions, and 
intensities.

● Previous research has found that 
pre-processing the data to distinguish 
rainfall intensities has improved QPE 
accuracy [3].

● We test clustering algorithms, decision 
trees, and setting a threshold using ZDR 
and ρhv to subset the data prior to 
running symbolic regression.



Mean metrics of three clusters from the trial with the highest mean test R2 score for
each clustering method using Feyn

4.2 Symbolic Regression on Clusters



4.2 Symbolic Regression on Clusters



4.2 Symbolic Regression on Decision Tree Leaf Nodes

Metrics from the trial with the highest test R2 score for each node using Feyn



4.2 Grouping by Radar Variable Mean



4.2 Grouping by Radar Variable Mean

Metrics from the trial with the highest test R2 score for each group using Feyn



4.2 Grouping by Radar Variable Mean



● Incorporated knowledge-based loss terms [6] into 
the loss function of gpg

○ Z–R relation (Z = aRb) loss term: 
○ Cluster-based loss term:

■ Silhouette score: measures how well the rainfall 
rates are assigned to their predetermined clusters

○ Binned rainfall loss term:
■ Prior to training: split the data into three groups of 

low, medium, and high rainfall rate
■ Adds to the loss if the model predicts a rainfall rate 

not aligning with the groups `

4.3 Exploring New Symbolic Regression Models with gpg



● Including the binned rainfall term in the loss function generated a more accurate and 
less complex symbolic expression

4.3 Exploring New Symbolic Regression Models with gpg

Metrics from the model with the highest test R2 score using custom loss functions in gpg



Benchmarking
● Symbolic regression is effective for quantitative precipitation estimation, providing 

interpretable and accurate models.

Symbolic Regression on Subsets with Feyn
● There is potential for data pre-processing methods that subset the data to improve the 

accuracy of learned equations.
● Applying Feyn symbolic regression on three clusters resulting from k-means clustering 

based on ZDR and ρhv achieved improved R2 scores, lower NRMSE scores, and slightly 
simpler equations.

Custom Loss Functions with gpg
● Adjusting and applying custom loss functions in gpg slightly improved the R2 scores 

and NRMSE scores while also improving the model simplicity.

5. Conclusion



This study can be built upon in the following ways:

● Test symbolic regression models on a larger dataset encompassing more geographic 
regions and dates. 

● Explore symbolic regression on time series data. 
● Conduct a deeper analysis on how to incorporate domain knowledge into the loss 

function of symbolic regression models to further improve learned equations.

5.1 Further Work
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