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Proton Beam Therapy

Proton beam radiotherapy is a type of cancer treatment
minimizing extraneous radiation exposure, an advantage over
other treatments

Most radiation is delivered at the ’Bragg peak’

Determination of the location of the Bragg peak and proton
beam is necessary for safe treatment

Figure: Proton Treatment Setup at UMD Proton Treatment Center
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Proton Beam Therapy

Figure: a: Optimal proton treatment beam (dashed) targeting a tumor
(green) with safety margin (orange), that due to uncertainty in Bragg
peak range and position overlaps with critical heart tissue (magenta). b:
Suboptimal treatment plan of two beams.
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Prompt Gamma Detection by the Compton Camera

When protons in proton beam interact with patient matter,
prompt gamma rays are emitted

The Compton camera is a type of detector of prompt gamma
rays: it can be used to construct a 3D image from 3D
locations of individual prompt gammas from three emission
cones

Limitation: Compton camera has the problem of a finite time
resolution

Distinct gamma rays may be incorrectly recorded as a single
event
The recorded order of the interactions may also be incorrect
This can lead to inaccurate data and noisy reconstructed
images
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Scatter Types

Concerned with 3 prompt gamma scattering groups (of which
combined are divided into 13 classes): True Triples, Doubles
to Triples (DtoT), and False Triples
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Problem Description

The data from the Compton camera must be cleaned to allow
usable image reconstruction

False Triples should be eliminated, DtoTs need to be ordered
and separate prompt gamma eliminated, and True Triples
need ordering

Problem: We need to classify the scatterings as one of 13
classes (6 True Triple, 6 DtoT, False Triple)

We attack this through classification by machine learning
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Data

Simulated Patient Data

Recently, novel simulated data originating from patient tissue
rather than water phantom has become available (patient
data may be more complex than water phantom)

Patient Data - CT Images of human tissue was used to
simulate variable-density tissue analogs
Water Phantom Data - Constant-density water medium are
used to simulate data

Data Generation

GEANT4
Monte-Carlo Detector Effects (to simulate prompt gamma
scattering events)

Data columns:
e1, x1, y1, z1, e2, x2, y2, z2, e3, x3, y3, z3, euc1, euc2, euc3, class

euc1, euc2, and euc3 are Euclidean distances
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Data

Datasets

1 Water Phantom (WP) dataset: consists of 1.8 million rows
generated from 150MeV, 20kMU/Min, 100kMU/Min,
180kMU/min data; used in previous research

2 Novel simulated patient medium dataset of 499,000 rows
generated from a variety of mixed energy (190-198MeV) and
(1, 20, 100, 180) kMU/Min data

3 A hybrid dataset of WP and simulated patient data; consists
of 3.8 million rows
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BRIDE

Big-data REU Integrated Development and
Experimentation (BRIDE) Platform

We developed the BRIDE coding and development platform for our
research to address several problem areas.

Problem areas:

Discontinuity in the Big-data REU PGML Project
Rigorous testing and flexible experimentation
Readable, well-designed, and documented code and runs

BRIDE:

High-level Workflow
A generic, modular system
Actual code implementation in the cluster
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BRIDE

Structure of BRIDE Platform

Figure: Flowchart of the design of the BRIDE platform



Background Methods Results Conclusions

Machine Learning Models

Machine Learning Models Implemented

Fully Connected (FCN) Neural Network

Every neuron in one layer is connected to every neuron in next
layer

Able to train very deep networks to enhance predictive power

Long Short-Term Memory (LSTM) Neural Network

A type of Recurrent Neural Network

Features long-term dependencies by using various gates for
information storage or discarding
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Machine Learning Models

Novel Custom Pairwise Loss Function

We developed a novel loss function penalizing wrong
predictions outside the correct event type (outside triple,
DtoT, and false triple), as model does not know of 3 distinct
types out of 13 classes

LP = (1 + avg((D · t) · p))h (1)

h is penalty and hyperparameter, D is a 13x13 matrix, and T
and P are the target and prediction matrices. Dij is the
penalty factor for classifying class i as j .
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BRIDE Reproduction of Previous Results

Results of previous WP work were reproduced with similar
accuracy results on BRIDE

Achieved 72.5% testing accuracy for LSTM model 65%
testing accuracy for FCN model, both on 1.8 million row
water phantom data.
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Simulated Patient Data

Patient Data Hyperparameter Study Structure

Stage 1: A grid of tests are run to determine set of constant
starting parameters and identify 3 candidate hyperparameters
for tuning

Stage 2: Hyperparameter Importance. For each of the 3
candidate hyperparameters, 2 values are chosen, and (2)(2)(2)
= 8 tests are done to identify the 2 most influential
parameters; hyperparameter that’s less influential is fixed at
optimal value.

Stage 3: Final Tuning. For each of the 2 influential
hyperparameters, 3 values are chosen, and (3)(3) = 9 tests
are done to identify optimal configuration.
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Simulated Patient Data

FCN Patient Data Hyperparameter Study Overview

Batch size (512) has little effect on accuracy, while dropout (0.05)
and neuron configuration (8 layers 272 ANL) are most influential.

Figure: FCN Constant Hyperparameters
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Simulated Patient Data

FCN Patient Data Hyperparater Study Results

Train Accuracy: 0.63, Validation Accuracy: 0.56
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Simulated Patient Data

LSTM Patient Data Hyperparameter Study Overview

We found that batch size (4096), dropout (0.15), and hidden
layers ([128, 64]) were most influential on accuracy.

Figure: LSTM Constant Hyperparameters
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Simulated Patient Data

LSTM Patient Data Hyperparameter Study Results

Train Accuracy: 0.61, Validation Accuracy: 0.56
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Hybrid Dataset

LSTM+FCL Hybrid Dataset Results

4 LSTM layers, 4 FCL layers, 128 neurons, 0.0 dropout,
learning rate step = 2000, learning rate gamma = 0.1, relu
activation

80% training accuracy, 76% validation accuracy
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Conclusions

Patient data hyperparameter study: Best FCN had [256,
256, 256, 256, 256, 128, 128, 128] architecture and 55.0%
testing accuracy; best LSTM had 4 LSTM + 128,64 FCL
architecture and 55.6% testing accuracy.

Comparisons with WP data: The architectures of the best
patient data models were similar to best models on WP data,
but with much lower accuracy.

Possible Causes: Simulated patient data is (1) generally
harder to train on and (2) best suited for FCNs.

Generalizations Deep NNs are very sensitive; even small
changes in how data is simulated can completely throw off
model performance.

Caveat: There is a distinct possibility that the gap in
performance was due to the much smaller amount of patient
data.
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Conclusions

Improved data volume: By leveraging a much larger hybrid
dataset, LSTM+FCL machine learning model achieved 76%
testing accuracy and F1 score with reduced overfitting.

Model simplification increased accuracy.

Improved workflow using BRIDE: modular development
process.

Future directions include further optimizing accuracy and
generating a larger patient dataset.
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