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Deep Learning Approaches for Cloud Property Retrieval

Motivation and Overview

Overview

Accurate cloud property retrieval is critical for near real-time
weather forecasting.

Vital to understanding Earth’s climate, energy balance, and
hydrological cycle.

Solution: Use various machine learning models to retrieve
these properties

Accurate retrieval algorithms for cloud properties reduce need
for manual labeling of data
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Motivation and Overview

Remote Sensing: Satellites and Imagers

GOES-R satellites (NOAA) use the Advanced Baseline
Imager (ABI).

ABI provides:

16 spectral bands
Higher temporal resolution than MODIS

Moderate Resolution Imaging Spectroradiometer (MODIS)
equipped on NASA’s Terra and Aqua satellites

Total spectral bands: 36
14 select bands used to train SatVision-TOA
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Motivation and Overview

Foundation Models in Remote Sensing

A foundation model (FM) is a large pre-trained model that
serves as a basis for downstream tasks

Powerful tool for remote sensing and geospatial tasks.

Transformers: capture spatial patterns and long-range
dependencies.

Fine-tuning:

FM used as encoder
Downstream tasks use pre-trained encoder as a starting point
Model pipeline may look like:
(preprocessor) → encoder → decoder → task head
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Motivation and Overview

SatVision-TOA

SatVision-TOA: a foundation model pretrained on 14 MODIS
bands.

Swin-V2 architecture, trained with Masked Image Modeling

Goal: Fine-tune SatVision-TOA using ABI’s enhanced data for
cloud property retrieval tasks
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Motivation and Overview

Why This Study?

Most FMs are trained on high-res data (like ABI) → less
frequent.

MODIS data is lower-res but more frequent.

Channel mismatch: SatVision expects 14 channels

ABI has 16 bands
We explore methods of handling this mismatch

Many studies look into segmentation

Benchmarking with segmentation and regression will help us
make stronger conclusions about whether the FM’s knowledge
can be generalized and used for varying tasks
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Deep Learning Approaches for Cloud Property Retrieval

Background and Dataset

Cloud Properties

Cloud Mask: Cloudy or not cloudy

Cloud Phase: Clear, Liquid, Supercooled, Mixed, Ice

Cloud Optical Depth (COD):
Measure of cloud opacity (higher = more opaque)

Cloud Particle Size (CPS):
Measure of average cloud particle radius

ln(1 + x) was trained and predicted for both regression tasks
instead of the raw value
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Background and Dataset

Tasks and Model Types

Goal: Retrieve Level-2 cloud properties from ABI data.

Architectures: U-Nets, DeepLab, CNNs, hierarchical classifiers

Tasks:

Segmentation: Cloud mask, Cloud phase
Regression: Cloud optical depth, Cloud particle size

Compare two strategies:

1 Fine-tune foundation model (SatVision-TOA)
2 Train models from scratch
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Methodology

Multi-Task Fine Tuned Model

• UNet Decoder: Input downsampled as it goes through encoder
stages and upsampled as it goes through the decoder stages

• Skip connections recover spatial detail lost during downsampling
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Methodology

Multi-Task Fine Tuned Model

• Cloud Mask prediction appended to the input of other task heads

• loss = 2 · CEMask + 1 · CEPhase +
1

100 (MSECOD +MSECPS)
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Methodology

Multi-Task Model Architecture

• Cloud Mask prediction appended to the output of U-nets

• loss = 1 · CEMask + 1 · CEPhase + 2(MSECOD +MSECPS)
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Deep Learning Approaches for Cloud Property Retrieval

Methodology

Comparing All Models

Table: Performance of Multitask and
Single-task Models on Cloud Attribute
Prediction.

Model Task mIOU Task r2 Train
Time

Multitask Models
Fine Tuned MT Mask 0.881 COD 0.527 1:56:27

Phase 0.627 CPS 0.605
From Scratch MT Mask 0.909 COD 0.775 45:59

Phase 0.700 CPS 0.786
Individual Models: Classification

Fine Tuned Mask 0.816 1:11:56
Fine Tuned Phase 0.713 1:57:28
Scratch U-net Mask 0.896 19:47
Scratch U-net Phase 0.664 20:18

Individual Models: Regression
Fine Tuned COD 0.754 1:51:52
Fine Tuned CPS 0.680 1:41:11
Scratch U-net COD 0.717 17:07
Scratch U-net CPS 0.738 17:00

From-scratch MT model
outperforms fine-tuned

Training time is
significantly shorter for
from-scratch runs.
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Methodology

Fine-Tuning Experiments

Fine-Tuning Experiments

Fine-Tuning Models and
Experiments
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Methodology

Fine-Tuning Experiments

Fine-Tuning Experiments

Significant computation is required for fine-tuning and train
times are long.

Parameter-Efficient Fine-Tuning (PEFT) strategies aim to
reduce this cost.
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Methodology

Fine-Tuning Experiments

Visual Prompt Tuning

In VPT, the inputs to the model are wrapped in learnable
prompts

During training, the entire encoder is frozen but prompts are
trainable

This allows the model to still learn but we only train a small
amount of parameters
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Methodology

Fine-Tuning Experiments

Visual Prompt Tuning

We implemented VPT Shallow; where prompts are injected
just to the first layer of the transformer

Prompts are added element-wise to patches.
1 prompt = 1 patch
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Methodology

Fine-Tuning Experiments

Low Rank Adaptation

Weight updates of the encoder approximated with low rank
matrices A and B: W = Wfrozen + AB

If W is n × n, A is n × r and B is r × n

n2 trainable parameters turns into 2 · r · n

D. Murphy, K. Zhang, C. Parten, A. Sterling, H. Zhang 17 / 41



Deep Learning Approaches for Cloud Property Retrieval

Methodology

Fine-Tuning Experiments

Comparing Fine Tuning Strategies

Table: Best Individual Task
Performance for each Fine Tuning
Strategy

Task Hyperparams Time to Train mIOU/r2

Mask
FFT 1:45:50 0.749
LoRA rk 32 1:11:56 0.816
VPT 300 prompts 1:01:32 0.675

Phase
FFT 1:51:42 0.649
LoRA rk 64 1:12:57 0.614
VPT 300 prompts 1:02:33 0.512

Optical Depth
FFT 1:51:52 0.754
LoRA rk 16 1:09:37 0.645
VPT 200 prompts 0:58:40 0.586

Particle Size
FFT 1:41:11 0.680
LoRA rk 32 1:08:10 0.664
VPT 100 prompts 0:58:55 0.574

VPT provides the best
improvement in training
time

LoRA is more balanced:
decreased training time,
producing competitive
results
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Methodology

Fine-Tuning Experiments

Visual Prompt Tuning: Best # of Prompts

Table: Performance of fine-tuned individual models with Visual Prompt
Tuning (VPT).

Task 100 Prompts 200 Prompts 300 Prompts
Classification mIOU

Mask 0.610 0.670 0.675
Phase 0.496 0.488 0.512

Regression r2 Score
COD 0.512 0.586 0.551
CPS 0.574 0.520 0.508

Classification tasks may prefer a higher number of prompts
than regression
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Methodology

Fine-Tuning Experiments

Low Rank Adaptation: Ranks

We tried different ranks across the single-task models
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Methodology

Fine-Tuning Experiments

Low Rank Adaptation: Multitask Training

Table: Multitask Model: Full Fine Tuning vs. LoRA rk. 16

Model Task mIOU Task r2 Train Time
FFT Mask 0.838 COD 0.550 1:53:54

Phase 0.578 CPS 0.610
LoRA Mask 0.755 COD 0.479 1:24:32

Phase 0.508 CPS 0.504

Training time decreased by about 25%

On average, task performance decreased by 13.075%

Most drastic change seen in the r2 score for CPS (-17.4%).
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Deep Learning Approaches for Cloud Property Retrieval

Methodology

Fine-Tuning Experiments

Tuning Losses

CE (pt) = − log(pt)

FL(pt) = −(1− pt)
γ log(pt)

Dice = 1− 2 · TP
(TP + FP) + (TP + FN)

With CE loss for cloud phase, models had difficulty handling
edges and were adversely affected by class imbalance in the
dataset

Focal loss was helpful for cloud mask, but did not work for
phase.

Using just dice loss did not work → weighted sum of Dice, CE
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Methodology

Fine-Tuning Experiments

Tuning Losses: Dice Weights

loss = dice weight · dice loss + (1− dice weight) · CE loss

Improved average recall from 0.719 (FFT, 16 bands, with just
CE) to .886 (FFT, 14 bands)
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Methodology

Fine-Tuning Experiments

Number of Bands

During much of our work, we were motivated to try to use all 16
bands. We used a preprocessor: two 2D Convolutions to go from
16 channels to 14.

We started trying 14 band
models to see how
performance changed

We got our highest mask
mIOU (from fine-tuning)
from MT 14-band model

Table: 14-Band and 16-Band
Multitask Models

Attribute 14 Bands 16 Bands
Dice Weight 0.30 0.23
Learning Rate 3e-4 3e-4

Mask mIOU 0.881 (+5.1%) 0.838
Phase mIOU 0.627 (+8.5%) 0.578
COD r2 0.527 (-4.2%) 0.550
CPS r2 0.605 (-0.7%) 0.609
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Methodology

Fine-Tuning Experiments

14 Band Single-Task Performance

We used full fine tuning
and LoRA for each
individual task,
adjusting: learning rates,
dice weight, and rank (if
training with LoRA)

Overall, the 14 band
models obtain
comparable results to 16
band models
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Methodology

Fine-Tuning Experiments

14 Band Single-Task Performance

Using the 14 ”matched”
to MODIS bands may
take better advantage of
encoder’s pretrained
knowledge

Further exploration of 14
band models may
improve our overall
fine-tuned performance

Preprocessor is a viable
option, may be useful for
future work if bands are
not as easily matched?
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Methodology

Fine-Tuning Experiments

Multitask Model Visuals

These predictions are from a 16-band multitask model, trained
with LoRA.

Overall, we find were successful in our goal: working with
SatVision-TOA to fine-tune meaningful cloud prediction models
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Methodology

From-scratch Experiments

From-Scratch

From-Scratch Models and
Experiments
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Methodology

From-scratch Experiments

MLPs

3 hidden layers with ReLU activation

Baseline before trying spatially aware models

Trained on 160 images, batch size of 2048 pixels

Table: MLPs benchmark evaluation

Model Task mIOU Task r2

MLP Mask 0.823 COD 0.724
Phase 0.578 CPS 0.640

D. Murphy, K. Zhang, C. Parten, A. Sterling, H. Zhang 29 / 41



Deep Learning Approaches for Cloud Property Retrieval

Methodology

From-scratch Experiments

Trees, Linear Regression, Forest, Gradient Boosting

Other algorithmic models used for both pixel-by-pixel classification
and regression with Sci-kit Learn.

Table: MLPs benchmark evaluation

Model Task mIOU Task r2

Decision Tree Mask 0.903
Phase 0.729

Linear Regression COD 0.212
CPS 0.299

Regression Forest COD 0.663
CPS 0.609

Hist Grad Boosting COD 0.786
CPS 0.739
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Methodology

From-scratch Experiments

Pixel-by-pixel models

Decision trees and Histogram-based Gradient Boosting
outperformed MLP models

Figure: Comparing pixel-based model evaluations
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Methodology

From-scratch Experiments

Individual U-nets

Type of Convolutional Neural Network

Uses Resnet-34 encoder

Skip layers capture multi-level features

Table: Single U-net evaluation

Model Task mIOU Task r2

U-net Mask 0.896 COD 0.717
Phase 0.664 CPS 0.738
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Methodology

From-scratch Experiments

Multi-task

V1: Cloud mask output appended to input of other U-nets

V2: Cloud mask and phase output appended to input of
other U-nets

V3: Encoder and decoder setup. Cloud mask appended to
output of other U-nets

V4: U-nets replaced with DeepLab
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Methodology

From-scratch Experiments

Multi-task Diagram

• Cloud Mask prediction appended to the output of U-nets

• Batch Normalization added in encoder
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Methodology

From-scratch Experiments

Multi-task cont.

Table: Multi-task common hyper-parameters

Images 14973
Train/Validation/Test Split 80/10/10
Optimizer Adam
Batch size 128
Learning rate .00002
Learning rate scheduler Patience=3, Factor=.5
Epochs 100
Loss Unweighted sum of individual losses
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Methodology

From-scratch Experiments

Multi-task from Scrach Results

Table: Multitask evaluation

Model Task mIOU Task r2 Train Time
V1 Mask 0.819 COD 0.740 40:16

Phase 0.642 CPS 0.742
V2 Mask 0.707 COD 0.719 40:48

Phase 0.471 CPS 0.471
V3 Mask 0.911 COD 0.767 43:07

Phase 0.692 CPS 0.776
V3.1 Mask 0.915 COD 0.769 44:30

Phase 0.696 CPS 0.781
V4 Mask 0.847 COD 0.697 48:41

Phase 0.632 CPS 0.700
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Methodology

From-scratch Experiments

Multi-task from Scrach Results

Figure: Comparing multi-task model evaluations
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Methodology

From-scratch Experiments

Multi-task Loss Weight Tuning Cont.

Table: Adjusting Loss Weights in MT V3.1

Weights Task mIOU Task r2 Train Time
(1, 1, 1, 1) Mask 0.915 COD 0.769 44:30

Phase 0.696 CPS 0.781
(1, 1, .5, .5) Mask 0.866 COD 0.706 39:34

Phase 0.648 CPS 0.716
(1, 1, 2, 2) Mask 0.909 COD 0.775 45:59

Phase 0.700 CPS 0.786
(2, 1, 1, 1) Mask 0.887 COD 0.734 38:40

Phase 0.654 CPS 0.743
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Methodology

From-scratch Experiments

Multi-task Loss Weight Tuning Cont.
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Conclusion and Discussion

Conclusion

SatVision-TOA performs well on both segmentation and
regression tasks when fine-tuned with ABI data

Low rank adaptation is successful in achieving comparable
results to full fine tuning while reducing training time

Multi-task models offer efficiency and improved task results in
some cases

Comparing foundation model adaptation vs. training from
scratch reveals:

Trade-offs in accuracy vs. training cost
Task-specific differences in performance

D. Murphy, K. Zhang, C. Parten, A. Sterling, H. Zhang 40 / 41



Deep Learning Approaches for Cloud Property Retrieval

Conclusion and Discussion

Key Insights and Products

Knowledge from foundation models pretrained on MODIS can
be transferred to ABI-based tasks despite a different number
of spectral bands and resolution differences

Future research may look further into the band mismatch
problem

Multi-task learning consolidates inference pipelines

Github: https://github.com/asterli6/big-data-reu
https://github.com/big-data-lab-umbc/big-data-reu/tree/main/2025-projects/team-1
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