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Background Methods Results

Proton Beam Therapy

Proton beam radiotherapy is a type of cancer treatment
minimizing extraneous radiation exposure, an advantage over
other treatments

Most radiation is delivered at the ’Bragg peak’

Determination of the location of the Bragg peak and proton
beam is necessary for safe treatment

Figure: Proton Treatment Setup at UMD Proton Treatment Center
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Proton Beam Therapy

Figure: a: Optimal proton treatment beam (dashed) targeting a tumor
(green) with safety margin (orange), that due to uncertainty in Bragg
peak range and position overlaps with critical heart tissue (magenta). b:
Suboptimal treatment plan of two beams.
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Prompt Gamma Detection by the Compton Camera

When protons in proton beam interact with patient matter,
prompt gamma rays are emitted

The Compton camera is a type of detector of prompt gamma
rays: it can be used to construct a 3D image from 3D
locations of individual prompt gammas from three emission
cones

Limitation: Compton camera has the problem of a finite time
resolution

Distinct gamma rays may be incorrectly recorded as a single
event
The recorded order of the interactions may also be incorrect
This can lead to inaccurate data and noisy reconstructed
images
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Scatter Types

Concerned with 3 prompt gamma scattering groups (of which
combined are divided into 13 classes): True Triples, Doubles
to Triples (DtoT), and False Triples
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Problem Description

The data from the Compton camera must be cleaned to allow
usable image reconstruction

False Triples should be eliminated, DtoTs need to be ordered
and separate prompt gamma eliminated, and True Triples
need ordering

Problem: We need to classify the scatterings as one of 13
classes (6 True Triple, 6 DtoT, False Triple)

We attack this through classification by machine learning
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Simulated Patient Data

Recently, novel simulated data originating from patient tissue
rather than water phantom has become available (patient
data may be more complex than water phantom)

Patient Data - CT Images of human tissue was used to
simulate variable-density tissue analogs from Polaris-J 3
Compton Camera (PJ3CC)
Water Phantom Data - Constant-density water medium are
used to simulate data

Data columns:
e1, x1, y1, z1, e2, x2, y2, z2, e3, x3, y3, z3, euc1, euc2, euc3, class

euc1, euc2, and euc3 are Euclidean distances
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Geant4 and MCDE

Geant4 - GEometry ANd Tracking

Software toolkit that models interactions of protons with
matter (e.g. water phantom or variable-density medium)

MCDE - Monte Carlo Detector Effects

MCDE adds detector timing and trigger effects to make
simulated Geant4 data more similar to Compton
camera-captured data

Separates out singles, doubles, and triples
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Novel Datasets in 2025

Patient Data: through the PJ3CC with the camera under
the couch

patient 2025: a 1.1 million row dataset from simulated
patient data; MCDE was run on each energy layer separately
al patient 2025: a 4.1 million row dataset from simulated
patient data; MCDE was run after all energy layers were
combined
patient combined: a 700k row dataset from combining all
post-MCDE data and feeding it through preprocessing; is class
balanced

Water Phantom: data generated from a Geant4 simulation
of proton beams at multiple energies and varying beam
positions in 3D space passing through a water-filled box to
mimic tissue response

Water phantom uses a Compton Camera from the snout (new
orientation)

A. Calingo, B. Gautam, P. Jin, S. Pathak, M. Zhao Large-Scale Optimizations in Proton Beam Radiotherapy by Neural Network Denoising of Simulated Patient Data 9/30



Background Methods Results

Big-data REU Integrated Development and
Experimentation (BRIDE) Platform

We utilized the BRIDE coding and development platform for our
research to allow for:

Rigorous testing processes and flexible model development
and experimentation

Readable, well-designed, and documented code and runs

BRIDE is:

A high-level modular code Workflow

Uses PyTorch Lightning’s Distributed Data Parallel (DDP) to
allow for multiple-GPU training

Tensorboard support for visualizing results in real time
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Structure of BRIDE Platform

Figure: Flowchart of the design of the BRIDE platform
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Machine Learning Models

Machine Learning Models Implemented

Fully Connected (FCN) Neural Network

Each neuron connects to all neurons in the next layer; able to
train very deep networks

Long Short-Term Memory (LSTM) Neural Network

Features long-term dependencies by using various gates for
information storage or discarding

1-D Convolutional Neural Network (CNN)

A type of ML model designed to process sequential data

1-dimensional because tabular data lacks spatial correlation

Event Classifier Transformer

Self-attention mechanism would better capture long-range
dependencies across scattering events, compared to recurrent
models like LSTMs.
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Machine Learning Models

Grid Search Integration

We implemented Grid Search for each of the aforementioned
models to increase efficiency in hyperparameter tuning.

A large number of jobs can be submitted automatically at
once

Grid Search has been created for the 1D CNN model, the
Deep Impr FCN model, LSTM24, Event Classifier
Transformer, and the IMPR FCN model that is used to train
patient data

With each run, the results along with the particular set of
hyperparameters is outputted
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Patient 2025 & Al Patient 2025 LSTM Grid Search

18 combinations of hyperparameters were tested using Grid Search
on the LSTM24 model using the 1 million row and the 4 million
row simulated patient datasets.

Hyperparameter Value
Neuron Configuration [128,128,128,128], [128,64]

Dropout 0.05, 0.15, 0.3
Learning Rate 0.001, 0.0005, 0.0001

Table: LSTM Grid Search Candidate Hyperparameters
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LSTM Grid Search Hyperparameters

Certain hyperparameters were held constant throughout the runs.

Hyperparameter Value
Hardware 4 rtx6000 GPUs

Validation split 0.1
Batch size 256

Learning Rate Change 0.1
Learning Rate Step 1000

L2 0.0000001
Loss Function CrossEntropy + Custom Pairwise Loss (p=1)
Optimizer Adam

Activation Function ReLU
Max Epochs 4000

Table: LSTM Grid Search Constant Hyperparameters
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Patient 2025 LSTM Grid Search Results

Results testing on the 1 million
row simulated patient data:

Highest Train & Validation
Accuracy: 73.4% and
70.4%

Achieved 71% testing
accuracy (15% increase
from any previous result on
patient data)

Associated hyperparameters:

Neuron Configuration:
[128,128,128,128]

Dropout: 0.05

Learning Rate: 0.0001
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Al Patient 2025 LSTM Grid Search

Results testing on the 4 million
row real patient data:

Highest Train & Validation
Accuracy: 75% and 73%

Demonstrates the aid of a
larger dataset to train on

(17% increase from any
previous result on patient
data)

Results for 8000 epoch
run: training - 74.5%,
validation - 73.5%

Associated hyperparameters:

Neuron Configuration: [128,64]

Dropout: 0.15

Learning Rate: 0.0005
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Testing Patient Data-Trained LSTM Model on Water
Phantom Data

Results testing on water phantom data:

Highest Train accuracy + Validation Accuracy: 73.1% and
75.6%

WP data testing results were very similar to the patient data

Associated hyperparameters:

Hyperparameter Value
Neuron Configuration [128,64]

Dropout 0.3
Learning Rate 0.0001

Table: LSTM Testing on Barajas WP Data Hyperparameters
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Patient 2025 & Al Patient 2025 FCN Grid Search

18 combinations of hyperparameters were tested were tested on a
FCN model using the 1 million row and 4 million row simulated
patient datasets.

Hyperparameter Value
Neuron Configuration [512, 256, 256, 256, 256, 256, 256, 128],

[256, 256, 128, 128]
Dropout 0.05, 0.2, 0.4

Learning Rate 0.001, 0.0005, 0.0001

Table: FCN Grid Search Candidate Hyperparameters

A. Calingo, B. Gautam, P. Jin, S. Pathak, M. Zhao Large-Scale Optimizations in Proton Beam Radiotherapy by Neural Network Denoising of Simulated Patient Data 19/30



Background Methods Results

FCN Grid Search Hyperparameters

Certain parameters were held constant throughout the grid search.

Hyperparameter Value
Hardware 4 rtx6000 GPUs

Validation split 0.1
Batch size 256

Learning Rate Change 0.9
Learning Rate Step 100

L2 0.01
Loss Function CrossEntropy + Custom Pairwise Loss (p=1)
Optimizer Adam

Activation Function ReLU

Table: FCN Grid Search Constant Hyperparameters
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Patient 2025 FCN Grid Search Results

Results testing on the 1 million
row simulated patient data:

Highest Training &
Validation Accuracy:
72.6% and 73%

Achieved 73% testing
accuracy (17% accuracy
increase from any previous
patient data result)

8000 epoch job with these
hyperparameters reached
73% validation accuracy

Associated hyperparameters:

Neuron Configuration:
[256,256,128,128]

Dropout: 0.05

Learning Rate: 0.0005
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Al Patient 2025 FCN Grid Search Results

Results testing on the 4 million
row simulated patient data:

Highest Training &
Validation Accuracy:
73.8% and 74.2%

Achieved 74% testing
accuracy (18% accuracy
increase from any previous
patient data result)

Submitted job for 8000
epochs; awaiting results

Associated hyperparameters:

Neuron Configuration: [512, 256,
256, 256, 256, 256, 256, 128]

Dropout: 0.05

Learning Rate: 0.0001
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Confusion Matrices

Left: Best Al patient LSTM model Right: Best Al patient FCN model
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Transformers

To explore different models we also began to develop an event
classifier transformer.

We chose the event classifier transformer because we felt that
its self-attention mechanism would better capture long-range
dependencies across scattering events, compared to recurrent
models like LSTMs.

The event classifier transformer is state of the art in high
energy physics
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Transformers Results: Part 1

After debugging, a test run was submitted with shallow
architecture and a fairly high learning rate.

Model accuracy plateaued at 56.7 percent until early dropout
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Transformer Parameters

Hyperparameter Value
Max epochs 4,000

Validation split 0.1
Batch size 256

Learning Rate 0.0001
Learning Rate Step 1000

L2 1 ∗ 10−7

Custom Loss True
Optimizer Adam
Nodes 64
nheads 4

Linear factor 32
Num layers 4

Table: Transfomer Hyperparameters
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Transformers Results: Part 2

Val Accuracy steadily increased until around epoch 121

Validation Accuracy plateaued at 69 percent, early dropout
activated at epoch 421

Training Accuracy around 75 percent

Validation Accuracy fluctuates between 65-69 percent
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Transfomers Grid Search Hyperparameters

Certain parameters were held constant throughout the grid search.

Hyperparameter Value
Hardware 4 rtx6000 GPUs

Validation split 0.1
Batch size 256

Learning Rate Change 0.9
Learning Rate Step 100

L2 0.01
Loss Function CrossEntropy + Custom Pairwise Loss (p=1)
Optimizer Adam

Activation Function ReLU
Linear Factor 4

Table: Transformers Grid Search Constant Hyperparameters
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Hyperparameter Study

Highest Training and Validation Accuracy was 75% and 70%
Associated hyperparameters:

lr: 0.0005
DropOut: 0.15
nodes: 128
numlayers: 4
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Conclusions and Products

Significantly increased model accuracy and
generalizability: with large-scale grid search, model testing
accuracy improved up to 18% compared to previous work

Novel robust simulated patient datasets: generated novel
data up to 8x than previous work

Novel model implementations: a novel Event Classifier
Transformer and 1D Convolutional Neural Network were
developed, better capturing data dependencies

Increased model effectiveness for real-world clinical
settings

Github: https://github.com/big-data-lab-umbc/big-data-reu.
TR: HPCF–2025–5, UMBC HPCF, 2025

Expected Paper: REU Symposium at 2025 IEEE ICDM
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